skip to main content


Search for: All records

Creators/Authors contains: "Kim, Young-Ki"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Liquid crystals (LCs) are fluids within which molecules exhibit long-range orientational order, leading to anisotropic properties such as optical birefringence and curvature elasticity. Because the ordering of molecules within LCs can be altered by weak external stimuli, LCs have been widely used to create soft matter systems that respond optically to electric fields (LC display), temperature (LC thermometer) or molecular adsorbates (LC chemical sensor). More recent studies, however, have moved beyond investigations of optical responses of LCs to explore the design of complex LC-based soft matter systems that offer the potential to realize more sophisticated functions ( e.g. , autonomous, self-regulating chemical responses to mechanical stimuli) by directing the interactions of small molecules, synthetic colloids and living cells dispersed within the bulk of LCs or at their interfaces. These studies are also increasingly focusing on LC systems driven beyond equilibrium states. This review presents one perspective on these advances, with an emphasis on the discovery of fundamental phenomena that may enable new technologies. Three areas of progress are highlighted; (i) directed assembly of amphiphilic molecules either within topological defects of LCs or at aqueous interfaces of LCs, (ii) templated polymerization in LCs via chemical vapor deposition, an approach that overcomes fundamental challenges related to control of LC phase behavior during polymerization, and (iii) studies of colloids in LCs, including chiral colloids, soft colloids that are strained by LCs, and active colloids that are driven into organized states by dissipation of energy ( e.g. bacteria). These examples, and key unresolved issues discussed at the end of this perspective, serve to convey the message that soft matter systems that integrate ideas from LC, surfactant, polymer and colloid sciences define fertile territory for fundamental studies and creation of future transformative technologies. 
    more » « less
  3. We demonstrate that a first order isotropic-to-nematic phase transition in liquid crystals can be succesfully modeled within the generalized Landau-de Gennes theory by selecting an appropriate combination of elastic constants. The numerical simulations of the model established in this paper qualitatively reproduce the experimentally observed configurations that include interfaces and topological defects in the nematic phase. 
    more » « less
  4. null (Ed.)
  5. Extrusion, electrospinning, and microdrawing are widely used to create fibrous polymer mats, but these approaches offer limited access to oriented arrays of nanometer-scale fibers with controlled size, shape, and lateral organization. We show that chemical vapor polymerization can be performed on surfaces coated with thin films of liquid crystals to synthesize organized assemblies of end-attached polymer nanofibers. The process uses low concentrations of radical monomers formed initially in the vapor phase and then diffused into the liquid-crystal template. This minimizes monomer-induced changes to the liquid-crystal phase and enables access to nanofiber arrays with complex yet precisely defined structures and compositions. The nanofiber arrays permit tailoring of a wide range of functional properties, including adhesion that depends on nanofiber chirality.

     
    more » « less